Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470192

RESUMEN

BACKGROUND AND AIMS: Niche differentiation is a critical issue in speciation. Although it has a well-known role in adaptive processes of hybrid angiosperms, it is less understood in hybrid ferns. Here we investigate whether an intermediate ecological niche of a fern hybrid is a novel adaptation that provides insights into fern hybrid speciation. METHODS: Pteris fauriei (Pteridaceae) is a natural hybrid fern, occurring environments between its parent species. The maternal P. minor is found in sunny areas, but the habitat of the paternal P. latipinna is shady. We combined data from morphology, leaf anatomy, and photosynthetic traits to explore adaptation and differentiation, along with measuring the environmental features of their niches. We also performed experiments in a common garden to understand ecological plasticity. KEY RESULTS: The hybrid P. fauriei is intermediate between the parent species in stomatal density, leaf anatomical features, and photosynthetic characteristics in both natural habitats and a common garden. Interestingly, the maternal P. minor showed significant environmental plasticity and was more similar to the hybrid P. fauriei in the common garden, suggesting that the maternal species experiences stress in its natural habitats but thrives in the environments similar to the hybrid's. CONCLUSIONS: Based on the similar niche preferences of the hybrid and parents, we propose hybrid superiority. Our results indicate that the hybrid P. fauriei exhibits greater fitness and can compete with and occupy the initial niches of the maternal P. minor. Consequently, we suggest that the maternal P. minor has experienced a niche shift, elucidating the pattern of niche differentiation in this hybrid group. These findings offer a potential explanation for the frequent occurrence of hybridization in ferns and provide novel insights into fern hybrid speciation, enhancing our understanding of fern diversity.

2.
J R Soc Interface ; 19(192): 20220204, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35857904

RESUMEN

Silica bodies are commonly found in Selaginella, but their function is unclear. Lens-like appearance and location in many species above giant chloroplasts of dorsal epidermal cells suggest optical functions. Silica body morphology in three Selaginella species was studied by microscopy. Optical effects were assessed by wave-optic simulations. Large convex, approximately hemispherical (papillose) and small approximately conical (concave-convex) silica bodies were found in different species. Both types lead to a concentrated spot of light high in the dorsal epidermal cell. Large convex bodies concentrate light 10-25 times in a shape-dependent manner by refraction, and small silica bodies concentrate light in a shape-insensitive, but wavelength-dependent, manner by diffraction (red light: approx. 2.3 times; blue light: approx. 1.5 times). Due to chloroplast movement, this concentrated light is above the chloroplast under high light, but within it under low light. Beyond the spot of concentration, light is dispersed into the chloroplast. Thin Selaginella leaves mean these effects may enhance light capture and minimize photodamage, but other effects such as inhibition of herbivory, mechanical support, and immune responses need to be considered. Silica bodies undoubtedly have optical effects, but their significance to the functioning of the plant requires direct studies of ecophysiological performance.


Asunto(s)
Selaginellaceae , Cloroplastos/fisiología , Hojas de la Planta/fisiología , Dióxido de Silicio
3.
Mitochondrial DNA B Resour ; 6(12): 3369-3371, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805514

RESUMEN

The plastid genome of the deep-shade plant Selaginella erythropus, which has highly unusual chloroplasts, was characterized using Illumina pair-end sequencing. This plastome is 140,151 bp in length with a large single-copy region (LSC) of 56,133 bp, a small single-copy region (SSC) of 61,268 bp, and two direct repeats (DRs) of 11,375 bp. The overall GC content is 50.68%, while those of LSC, SSC, and DR are 48.96%, 50.3%, and 55.96%, respectively. The plastome contains 102 genes, including 76 protein-coding, 15 tRNA (12 tRNA species), and 8 rRNA genes (4 rRNA species). The phylogenetic analysis shows that S. erythropus is closely related to S. moellendorffii and S. doederleinii. This result is consistent with the previous phylogenetic relationship inferred from multiple plastid and nuclear loci. However, only S. erythropus has the two-zoned giant chloroplast, the bizonoplast. The plastome provides an excellent reference for understanding the unique chloroplast differentiation in Selaginellaceae.

4.
Am J Bot ; 107(4): 562-576, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32227348

RESUMEN

PREMISE: Unique among vascular plants, some species of Selaginella have single giant chloroplasts in their epidermal or upper mesophyll cells (monoplastidy, M), varying in structure between species. Structural variants include several forms of bizonoplast with unique dimorphic ultrastructure. Better understanding of these structural variants, their prevalence, environmental correlates and phylogenetic association, has the potential to shed new light on chloroplast biology unavailable from any other plant group. METHODS: The chloroplast ultrastructure of 76 Selaginella species was studied with various microscopic techniques. Environmental data for selected species and subgeneric relationships were compared against chloroplast traits. RESULTS: We delineated five chloroplast categories: ME (monoplastidy in a dorsal epidermal cell), MM (monoplastidy in a mesophyll cell), OL (oligoplastidy), Mu (multiplastidy, present in the most basal species), and RC (reduced or vestigial chloroplasts). Of 44 ME species, 11 have bizonoplasts, cup-shaped (concave upper zone) or bilobed (basal hinge, a new discovery), with upper zones of parallel thylakoid membranes varying subtly between species. Monoplastidy, found in 49 species, is strongly shade associated. Bizonoplasts are only known in deep-shade species (<2.1% full sunlight) of subgenus Stachygynandrum but in both the Old and New Worlds. CONCLUSIONS: Multiplastidic chloroplasts are most likely basal, implying that monoplastidy and bizonoplasts are derived traits, with monoplastidy evolving at least twice, potentially as an adaptation to low light. Although there is insufficient information to understand the adaptive significance of the numerous structural variants, they are unmatched in the vascular plants, suggesting unusual evolutionary flexibility in this ancient plant genus.


Asunto(s)
Selaginellaceae , Tracheophyta , Evolución Biológica , Cloroplastos , Filogenia , Hojas de la Planta
5.
J Plant Res ; 131(4): 655-670, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29500749

RESUMEN

Iridoplasts (modified plastids in adaxial epidermal cells) reported from Begonia were originally hypothesized to cause iridescence, which was broadly accepted for decades. However, several species of Begonia with iridoplasts are not iridescent causing confusion. Here chloroplast ultrastructure was observed in 40 taxa of Begoniaceae to explore the phenomenon of iridescence. However, 22 Begonias and Hillebrandia were found to have iridoplasts, but only nine display visually iridescent blue to blue-green leaves. Unexpectedly, a new type of plastid, a 'minichloroplast,' was found in the abaxial epidermal cells of all taxa, but was present in adaxial epidermal cells only if iridoplasts were absent. Comparative ultrastructural study of iridoplasts and a shading experiment of selected taxa show that a taxon with iridoplasts does not inevitably have visual iridescence, but iridescence is greatly affected by the spacing between thylakoid lamellae (stoma spacing). Thus, we propose instead the name 'lamelloplast' for plastids filled entirely with regular lamellae to avoid prejudging their function. To evaluate photosynthetic performance, chlorophyll fluorescence (F v /F m ) was measured separately from the chloroplasts in the adaxial epidermis and lower leaf tissues by using leaf dermal peels. Lamelloplasts and minichloroplasts have much lower photosynthetic efficiency than mesophyll chloroplasts. Nevertheless, photosynthetic proteins (psbA protein of PSII, RuBisCo and ATPase) were detected in both plastids as well as mesophyll chloroplasts in an immunogold labeling. Spectrometry revealed additional blue to blue-green peaks in visually iridescent leaves. Micro-spectrometry detected a blue peak from single blue spots in adaxial epidermal cells confirming that the color is derived from lamelloplasts. Presence of lamelloplasts or minichloroplasts is species specific and exclusive. High prevalence of lamelloplasts in Begoniaceae, including the basal clade Hillebrandia, highlights a unique evolutionary development. These new findings clarify the association between iridescence and lamelloplasts, and with implications for new directions in the study of plastid morphogenesis.


Asunto(s)
Begoniaceae/fisiología , Cloroplastos/fisiología , Fotosíntesis/fisiología , Plastidios/fisiología , Begoniaceae/ultraestructura , Cloroplastos/ultraestructura , Fluorescencia , Inmunohistoquímica , Iridiscencia , Microscopía Confocal , Microscopía Electrónica de Transmisión , Hojas de la Planta/fisiología , Hojas de la Planta/ultraestructura , Plastidios/ultraestructura
6.
Front Plant Sci ; 8: 1333, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28798769

RESUMEN

Leaf variegation is often the focus of plant breeding. Here, we studied a variegated mutant of Phalaenopsis aphrodite subsp. formosana, which is usually used as a parent of horticultural breeding, to understand its anatomic and genetic regulatory mechanisms in variegation. Chloroplasts with well-organized thylakoids and starch grains were found only in the mesophyll cells of green sectors but not of yellow sectors, confirming that the variegation belongs to the chlorophyll type. The two-dimensional electrophoresis and LC/MS/MS also reveal differential expressions of PsbP and PsbO between the green and yellow leaf sectors. Full-length cDNA sequencing revealed that mutant transcripts were caused by intron retention. When conditioning on the total RNA expression, we found that the functional transcript of PsbO and mutant transcript of PsbP are higher expressed in the yellow sector than in the green sector, suggesting that the post-transcriptional regulation of PsbO and PsbP differentiates the performance between green and yellow sectors. Because PsbP plays an important role in the stability of thylakoid folding, we suggest that the negative regulation of PsbP may inhibit thylakoid development in the yellow sectors. This causes chlorophyll deficiency in the yellow sectors and results in leaf variegation. We also provide evidence of the link of virus CymMV and the formation of variegation according to the differential expression of CymMV between green and yellow sectors.

7.
J Plant Res ; 130(2): 311-325, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27995375

RESUMEN

The presence of foliar variegation challenges perceptions of leaf form and functioning. But variegation is often incorrectly identified and misinterpreted. The striking variegation found in juvenile Blastus cochinchinensis (Melastomataceae) provides an instructive case study of mechanisms and their ecophysiological implications. Variegated (white and green areas, vw and vg) and non-variegated leaves (normal green leaves, ng) of seedlings of Blastus were compared structurally with microtechniques, and characterized for chlorophyll content and fluorescence. More limited study of Sonerila heterostemon (Melastomataceae) and Kaempferia pulchra (Zingiberaceae) tested the generality of the findings. Variegation in Blastus combines five mechanisms: epidermal, air space, upper mesophyll, chloroplast and crystal, the latter two being new mechanisms. All mesophyll cells (vw, vg, ng) have functional chloroplasts with dense thylakoids. The vw areas are distinguished by flatter adaxial epidermal cells and central trichomes containing crystals, the presence of air spaces between the adaxial epidermis and a colorless spongy-like upper mesophyll containing smaller and fewer chloroplasts. The vw area is further distinguished by having the largest spongy-tissue chloroplasts and fewer stomata. Both leaf types have similar total chlorophyll content and similar  F v/F m (maximum quantum yield of PSII), but vg has significantly higher F v/F m than ng. Variegation in Sonerila and Kaempferia is also caused by combined mechanisms, including the crystal type in Kaempferia. This finding of combined mechanisms in three different species suggests that combined mechanisms may occur more commonly in nature than current understanding. The combined mechanisms in Blastus variegated leaves represent intricate structural modifications that may compensate for and minimize photosynthetic loss, and reflect changing plant needs.


Asunto(s)
Melastomataceae/anatomía & histología , Melastomataceae/fisiología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Cloroplastos/metabolismo , Células del Mesófilo/metabolismo , Plantones/anatomía & histología , Plantones/fisiología , Zingiberaceae/anatomía & histología , Zingiberaceae/fisiología
8.
J Exp Bot ; 67(14): 4415-25, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27279277

RESUMEN

Phytoplasmas are bacterial phytopathogens that release virulence effectors into sieve cells and act systemically to affect the physiological and morphological state of host plants to promote successful pathogenesis. We show here that transgenic Nicotiana benthamiana lines expressing the secreted effector SAP11 from Candidatus Phytoplasma mali exhibit an altered aroma phenotype. This phenomenon is correlated with defects in the development of glandular trichomes and the biosynthesis of 3-isobutyl-2-methoxypyrazine (IBMP). IBMP is a volatile organic compound (VOC) synthesized by an O-methyltransferase, via a methylation step, from a non-volatile precursor, 3-isobutyl-2-hydroxypyrazine (IBHP). Based on comparative and functional genomics analyses, NbOMT1, which encodes an O-methyltransferase, was found to be highly suppressed in SAP11-transgenic plants. We further silenced NbOMT1 through virus-induced gene silencing and demonstrated that this enzyme influenced the accumulation of IBMP in N. benthamiana In vitro biochemical analyses also showed that NbOMT1 can catalyse IBHP O-methylation in the presence of S-adenosyl-L-methionine. Our study suggests that the phytoplasma effector SAP11 has the ability to modulate host VOC emissions. In addition, we also demonstrated that SAP11 destabilized TCP transcription factors and suppressed jasmonic acid responses in N. benthamiana These findings provide valuable insights into understanding how phytoplasma effectors influence plant volatiles.


Asunto(s)
Metiltransferasas/metabolismo , Nicotiana/microbiología , Phytoplasma/metabolismo , Proteínas de Plantas/metabolismo , Pirazinas/metabolismo , Western Blotting , Metiltransferasas/genética , Filogenia , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nicotiana/metabolismo , Tricomas/metabolismo , Tricomas/fisiología
9.
Am J Bot ; 102(4): 500-11, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25878084

RESUMEN

UNLABELLED: • PREMISE OF THE STUDY: Chloroplast development and structure are highly conserved in vascular plants, but the bizonoplast of Selaginella is a notable exception. In the shade plant S. erythropus, each dorsal epidermal cell contains one bizonoplast, while other cells have normal chloroplasts. Our quest was to (1) determine the origin of bizonoplasts, (2) explore developmental plasticity, and (3) correlate developmental changes with photosynthetic activity to provide insights unavailable in other green plants with more constrained development.• METHODS: Bizonoplast development was studied in juvenile prostrate and older erect shoots of S. erythropus. Plastid plasticity was studied in plants cultivated under different light conditions. Chlorophyll fluorescence was measured and correlated with photosynthetic activity.• KEY RESULTS: The bizonoplast originates from a proplastid, forming a distinctive upper zone rapidly after exposure to low light. In the prostrate shoots, the proplastid develops through early stages only. When the shoot becomes erect, the proplastid soon develops into a mature bizonoplast. Erect shoots have significantly higher photosynthetic efficiency than prostrate shoots. No bizonoplasts were found in the plants growing in high light, where 2-4 spheroidal chloroplasts formed, or with light from below.• CONCLUSIONS: The upper zone develops above a normal-looking chloroplast structure to produce a bizonoplast. Bizonoplast developmental plasticity suggests that regular lamellar structure and monoplastidy are adaptations to deep shade environments. Such novel variation in S. erythropus is in stark contrast to known plastid development in other vascular plants, possibly reflecting retention of developmental flexibility in the basal clade, Lycophyta, to which it belongs.


Asunto(s)
Cloroplastos/metabolismo , Fotosíntesis , Selaginellaceae/metabolismo , Adaptación Fisiológica , Luz , Selaginellaceae/citología
10.
Proc Natl Acad Sci U S A ; 110(10): 3979-84, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23431200

RESUMEN

Our anatomical analysis revealed that a dry maize seed contains four to five embryonic leaves at different developmental stages. Rudimentary kranz structure (KS) is apparent in the first leaf with a substantial density, but its density decreases toward younger leaves. Upon imbibition, leaf expansion occurs rapidly with new KSs initiated from the palisade-like ground meristem cells in the middle of the leaf. In parallel to the anatomical analysis, we obtained the time course transcriptomes for the embryonic leaves in dry and imbibed seeds every 6 h up to hour 72. Over this time course, the embryonic leaves exhibit transcripts of 30,255 genes at a level that can be regarded as "expressed." In dry seeds, ∼25,500 genes are expressed, showing functional enrichment in transcription, RNA processing, protein synthesis, primary metabolic pathways, and calcium transport. During the 72-h time course, ∼13,900 genes, including 590 transcription factor genes, are differentially expressed. Indeed, by 30 h postimbibition, ∼2,200 genes expressed in dry seeds are already down-regulated, and ∼2,000 are up-regulated. Moreover, the top 1% expressed genes at 54 h or later are very different from those before 30 h, reflecting important developmental and physiological transitions. Interestingly, clusters of genes involved in hormone metabolism, signaling, and responses are differentially expressed at various time points and TF gene expression is also modular and stage specific. Our dataset provides an opportunity for hypothesizing the timing of regulatory actions, particularly in the context of KS development.


Asunto(s)
Zea mays/embriología , Zea mays/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Germinación/genética , Reguladores del Crecimiento de las Plantas/genética , Hojas de la Planta/embriología , Hojas de la Planta/genética , Proteínas de Plantas/genética , ARN de Planta/genética , Semillas/embriología , Semillas/genética , Factores de Transcripción/genética , Zea mays/fisiología
11.
Ann Bot ; 109(6): 1065-74, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22362664

RESUMEN

BACKGROUND AND AIMS: Foliar variegation is recognized as arising from two major mechanisms: leaf structure and pigment-related variegation. Begonia has species with a variety of natural foliar variegation patterns, providing diverse examples of this phenomenon. The aims of this work are to elucidate the mechanisms underlying different foliar variegation patterns in Begonia and to determine their physiological consequences. METHODS: Six species and one cultivar of Begonia were investigated. Light and electron microscopy revealed the leaf structure and ultrastructure of chloroplasts in green and light areas of variegated leaves. Maximum quantum yields of photosystem II were measured by chlorophyll fluorescence. Comparison with a cultivar of Ficus revealed key features distinguishing variegation mechanisms. KEY RESULTS: Intercellular space above the chlorenchyma is the mechanism of variegation in these Begonia. This intercellular space can be located (a) below the adaxial epidermis or (b) below the adaxial water storage tissue (the first report for any taxa), creating light areas on a leaf. In addition, chlorenchyma cell shape and chloroplast distribution within chlorenchyma cells differ between light and green areas. Chloroplasts from both areas showed dense stacking of grana and stroma thylakoid membranes. The maximum quantum yield did not differ significantly between these areas, suggesting minimal loss of function with variegation. However, the absence of chloroplasts in light areas of leaves in the Ficus cultivar led to an extremely low quantum yield. CONCLUSIONS: Variegation in these Begonia is structural, where light areas are created by internal reflection between air spaces and cells in a leaf. Two forms of air space structural variegation occur, distinguished by the location of the air spaces. Both forms may have a common origin in development where dermal tissue becomes loosely connected to mesophyll. Photosynthetic functioning is retained in light areas, and these areas do not include primary veins, potentially limiting the costs of variegation.


Asunto(s)
Begoniaceae/anatomía & histología , Begoniaceae/metabolismo , Cloroplastos/ultraestructura , Pigmentación/fisiología , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Begoniaceae/genética , Espacio Extracelular , Ficus/anatomía & histología , Ficus/metabolismo , Variación Genética , Genotipo , Fotosíntesis , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Especificidad de la Especie
12.
J Ethnopharmacol ; 117(2): 309-17, 2008 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-18372131

RESUMEN

AIM OF THE STUDY: Gypenosides, the saponins extract derived from Gynostemma pentaphyllum Makino, have been used for treating hepatitis and cancer in Asia. Our previous study demonstrates that gypenosides inhibit the onset and improve the recovery of liver fibrosis induced by CCl4 in rats. In this study, we used the isolated rat hepatic stellate cells (HSCs) as a model to study the cellular mechanism of gypenosides-inhibited liver fibrosis. MATERIALS AND METHODS: Rat HSCs was treated with PDGF, gypenosides or vehicle. Cell viability was assessed by trypan blue staining. Apoptosis and cell cycle were evaluated by flow cytometry. The activation or inhibition of signal molecules was detected by Western blotting. RESULTS: Our results showed that 500 microg/ml gypenosides decreased PDGF-induced rat HSCs numbers (8750+/-2629 versus 103,000+/-6683, p<0.001, 95% confidence interval) and arrested cells at the G1 phase without the presence of sub-G1 fraction. Analysis of PDGF-induced proliferative molecules including phosphorylation of Akt and p70 S6K, gypenosides inhibited the activation of this signal pathway. Furthermore, gypenosides down-regulated the protein expression of cell cycle G1-specific cyclin D1 and D3. CONCLUSIONS: Gypenosides inhibited PDGF-induced HSCs proliferation by inhibiting the signal pathway of PDGF-Akt-p70 S6K and down-regulation of cyclin D1 and D3 expression.


Asunto(s)
Fase G1/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Animales , Anexina A5/farmacología , Western Blotting , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Separación Celular , Ciclina D1/biosíntesis , Ciclina D1/genética , Ciclina D3 , Ciclinas/biosíntesis , Ciclinas/genética , Fibrosis , Gynostemma/química , Hepatocitos/patología , Masculino , Proteínas Quinasas Activadas por Mitógenos/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales/farmacología , Polvos , Ratas , Ratas Sprague-Dawley , Receptores del Factor de Crecimiento Derivado de Plaquetas/fisiología , Transducción de Señal/efectos de los fármacos
13.
Am J Bot ; 94(12): 1922-9, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21636386

RESUMEN

Study of the unique leaf anatomy and chloroplast structure in shade-adapted plants will aid our understanding of how plants use light efficiently in low light environments. Unusual chloroplasts in terms of size and thylakoid membrane stacking have been described previously in several deep-shade plants. In this study, a single giant cup-shaped chloroplast, termed a bizonoplast, was found in the abaxial epidermal cells of the dorsal microphylls and the adaxial epidermal cells of the ventral microphylls in the deep-shade spike moss Selaginella erythropus. Bizonoplasts are dimorphic in ultrastructure: the upper zone is occupied by numerous layers of 2-4 stacked thylakoid membranes while the lower zone contains both unstacked stromal thylakoids and thylakoid lamellae stacked in normal grana structure oriented in different directions. In contrast, other cell types in the microphylls contain chloroplasts with typical structure. This unique chloroplast has not been reported from any other species. The enlargement of epidermal cells into funnel-shaped, photosynthetic cells coupled with specific localization of a large bizonoplast in the lower part of the cells and differential modification in ultrastructure within the chloroplast may allow the plant to better adapt to low light. Further experiments are required to determine whether this shade-adapted organism derives any evolutionary or ecophysiological fitness from these unique chloroplasts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...